
Terminal I/O Functions
This chapter covers the following topics:

Concepts

Programming Considerations

Terminal Mapping

Advanced Facilities

LU6.2 Transaction Programs

Syntax

Extended Graphics Support

Examples

Concepts
During processing, an online application program is connected to a logical unit (LU). The LU can
represent a terminal, either directly or indirectly, through another system (ACCESS, CICS Transaction
Routing), or another application program (APPC sessions). The application program communicates with
the LU by using Com-plete’s Terminal I/O Functions. For asynchronous (non interactive) communication
with terminals or network printers refer to theMessage Switching, Printout Spooling and Terminal Paging
sections in this documentation.

Communication with logical units is governed by conventions (protocols) that apply to each type of
logical unit. The Terminal I/O Functions handle the corresponding protocols for the supported LU types in
order to free the application program from controlling the sessions.

An application program communicates with an LU by using control commands contained in the data
stream that control the processing and formatting of data. Two ways of handling terminal control are
available for applications:

Device-Dependent I/O

Device-Independent I/O

Device-Dependent I/O

Device-Dependent I/O functions require the application program to to provide and
manipulate all terminal control characters for both input and output operations within the
data stream itself. These functions must be usedonly when a program is always executed
from the same device type or when the program itself is able to recognize the device type
from which it was started. Device-dependent I/O functions are READS and WRTS.

1

Terminal I/O FunctionsTerminal I/O Functions

Device-Independent I/O

The Device-Independent I/O functions automatically supply the necessary control
characters and are useful when an application program can be called from different LU
types. Output formatting can be accomplished by inserting special characters in the
output data stream. On input Com-plete removes all control characters inserted by the
terminal before the data is passed to the application. The READ, WRT and WRTT
functions provide device-independent I/O support.

Terminal Mapping

The functions above require data formats to be defined internally - in the application
program. Every change in a field format or attribute requires modifications to the
program. Input and output data formats can also be defined externally to the application
program, in a separate module calledmap. The READM and WRTM functions use a map
as basis of reference for field layout and attributes (terminal control characters). An
application can optionally override the attributes defined in the map. Layouts and
attributes can be changed without modifications to the program.

Notes:

1. Device dependent and independent I/O functions work identically on LU6.2
sessions since the LU6.2 data stream does not contain control characters. Any
character in the stream is treated as data.

2. Do not use Terminal Mapping functions in LU6.2 sessions.
3. Although output with option Done works similar to conversational, it is not

possible to read data since the program is terminated without getting control.
4. Output with Return option followed by EOJ will terminate the program but the

last record will not be readable by the operator the program is terminated just
after displaying the message.

5. For LU6.2 sessions a the Done option works similar to Return + EOJ since there
is no way to get a reply from the partner and the last record can be read normally
at the other side.

6. The results of the carriage return character can be affected by theCR option in the
TIB macro. Refer to theTIBTABchapter in Com-plete System Programmers
documentation for more information.

7. For each New Line placed consecutively in the output buffer, a shift for the next
new line will be forced.

8. Delimiter lists cannot be used with the reread option
9. The Com-plete distribution source library contains sample delimiter lists for

COBOL (COBDLST), PL/I (PL1DLST) and Assembler Language (CCDLM)
that can be copied into the application program.

Programming Considerations

Program Logic

The Com-plete API makes handling of different protocols almost transparent to the application
programmer. It automatically inforces most protocol rules in order to avoid runtime errors so the program
design must take into account only the application requirements. It is important, however, to understand

2

Programming ConsiderationsTerminal I/O Functions

the internal processing logic and restrictions of the used functions in order to get the desired results:

Input functions do not cause any physical I/O to/from the partner LU; the data was already
received either at program startup or as a result of a previous output function. The previously
received data is just transfered from Com-plete’s buffers to the application program’s buffers. A
location counter, updated for every input request, is maintained to determine how much data from
the input buffer was already transferred to the application. The input buffer is freed only when the
application received all input data.

Output functions cause data/control information to be sent to the partner LU. The application is
ROLLed OUT and gets control only after completion of the request. Conversational requests are
put on the Ready To Run queue only after the reply data is received.

Input requests may be issued only after conversational output requests, except for the first input
after startup that returns the program name and initial data.

Com-plete’s buffer contents can be reread one or more times by specifying the reread option
(suffix R). The reread option will prevent updates to the location counter, so the next request will
transfer data starting at the same buffer location. Terminal dependent rereads must precede any
terminal independent request because the latter will translate all remaining data to
device-independent format.

Output Options

All Output requests (except READB) must specify a suffix that indicates the processing logic for the
request. The suffix must be either:

R Return.
The application program’s thread is ROLLed OUT, the data is sent to the terminal
or partner LU but Com-plete keeps the right to send (no CD is sent). The
application program is placed in the ready to run queue just after output
completion. LU6.2 transaction programs remain in SEND State.

C Conversational.
The application program is ROLLed OUT, Com-plete sends the data and CD to the
terminal or partner LU that now can send data back to Com-plete. When the reply
is received the application program is put in the ready to run queue and can now
issue a READ to retrieve the received data. LU6.2 application programs are now in
RECEIVE state.

D Done.
This option works similar to a conversational output followed by EOJ. The
difference is that the application does not get control - it is terminated normally
after receipt of the operator reply. For LU6.2 sessions the conversation is
terminated (CEB), the user logged off and the TIB is removed from the TIBTAB.

Notes:

1. Although output with option Done works similar to conversational, it is not possible to read data
since the program is terminated without getting control.

2. Output with Return option followed by EOJ will terminate the program but the last record will not
be readable by the operator the program is terminated just after displaying the message.

3

Terminal I/O FunctionsOutput Options

3. For LU6.2 sessions a the Done option works similar to Return + EOJ since there is no way to get a
reply from the partner and the last record can be read normally at the other side.

4. The results of the carriage return character can be affected by theCR option in the TIB macro.
Refer to theTIBTABchapter in Com-plete System Programmers documentation for more
information.

5. For each New Line placed consecutively in the output buffer, a shift for the next new line will be
forced.

6. Delimiter lists cannot be used with the reread option
7. The Com-plete distribution source library contains sample delimiter lists for COBOL

(COBDLST), PL/I (PL1DLST) and Assembler Language (CCDLM) that can be copied into the
application program.

3270 Terminal I/O Handling

Device dependent I/O

When using device dependent I/O functions the application program must handle the whole data stream.
All control characters the device places in the data stream are passed to the program on input. The
program must also provide all control characters on output. Errors in control characters may cause
unpredictable results.

Com-plete provides special facilities and handling for programmers using device-dependent I/O with IBM
327x compatible terminals.

For ease of use, all 3270 buffer addresses are referred to in the form of 2-Byte binary items relative to zero
(16-bit addressing). Thus, row 1 column 1 is x’0000’, row 2 collumn 3 is x’0052’ (on 3270 model 2
terminals), etc... This holds true for both input and output. Com-plete translates all 12-bit row-column
addresses into binary buffer offsets.

For terminal dependent output to 327x devices, the 1st output character is taken from the Write Cotrol
Character (WCC). The WCC will not appear on the screen.

Only modified data fields from 3270 screens are read. On an initial input of a screen, the following data is
presented to the application program:

Field data is variable in length so the most convenient way to process it (without using maps) is probably
using a device dependent input (READS) with specifying X’11’ (SBA) as delimiter. This enables the
program to determine the exact data on a field by field basis. Refer to section Delimiter Listsin this
chapter for more details.

Device independent I/O

Application programs using device independent input will receive no control characters - all characters
will be removed before data is transfered to the application. Backspace processing is performed for
devices that transfer a backspace character (TTY devices).

4

3270 Terminal I/O HandlingTerminal I/O Functions

For device independent output Com-plete supplies automatically all control characters required by the
device in use (at runtime). Data is written/displayed beginning at the upper left-most margin of the
page/left-hand corner of the screen using the maximum line length for the device. Outputs longer than 1
line continue on the next available lines. Further output formatting can be accomplished by using
embedded special characters:

Character Meaning Action

X’00’ Null
Character

No formatting action on most devices.
Treated as space on some devices.

X’05’ Horizontal
Tab

Translated into appropriate code for hardcopy terminal
devices. Padding characters may be Required.
Some devices ignore this code in the data stream.

X’0C’ Form Feed Force a "Skip to Channel 1" condition.
Ignored if the device does not support form feed.

X’0D’ Carriage
Return

Carriage return without line feed.Treated as "new line" if the
device does not support the carriage return character.

X’15’ New Line Carriage return with line feed.

X’16’ Backspace
Character

Overlays the previous character written.
Accepted by most terminal devices.

X’25’ Line Feed Causes a space down condition without carriage return.

X’40’ Space Embedded spaces can be used to affect output formatting.

Notes:

1. The results of the carriage return character can be affected by theCR option in the TIB macro.
Refer to theTIBTABchapter in Com-plete System Programmers documentation for more
information.

2. For each New Line placed consecutively in the output buffer, a shift for the next new line will be
forced.

3. Delimiter lists cannot be used with the reread option
4. The Com-plete distribution source library contains sample delimiter lists for COBOL

(COBDLST), PL/I (PL1DLST) and Assembler Language (CCDLM) that can be copied into the
application program.

Delimiter Lists

An Application Program may optionally specify a delimiter list - one or more delimiter characters that are
expected to be in the input data - instead of an amount of data to be read. Data is transferred up to (but not
including) the delimiter.

The delimiter list specified in the DLIST argument is a working storage area in the application program.
The format and contents of this area are illustrated in the following table:

5

Terminal I/O FunctionsDelimiter Lists

Location Length Format Contents

0 2 Binary Number of Delimiters in this list.

0 2 Binary Number of Characters returned. Must be initialized to zeros

4 2 Binary Relative number of found delimiter in list.

6 2 Binary Delimiters to be used

Notes:

1. Delimiter lists cannot be used with the reread option
2. The Com-plete distribution source library contains sample delimiter lists for COBOL

(COBDLST), PL/I (PL1DLST) and Assembler Language (CCDLM) that can be copied into the
application program.

Example

Assuming that the application sets the number of delimiters to 2, the delimiter list contains a comma and a
period, and the data read by Com-plete that resides in the Com-plete buffer was:

JONES,JAMES ALFRED,719 HIGH ROAD.

the data returned to the application program by issuing a series of READ functions with the delimiter list
option specified would be:

Read Issued Data Read
Number
Returned

Delimiter Found

First read: JONES 5 1

Second read: JAMES ALFRED 12 1

Third read: 719 HIGH ROAD 13 2

Fourth read: - 0 0

Terminal Mapping
Mapping transforms data by using a table called a map. A map defines both the output and input
characteristics of a given terminal screen. The map is defined and stored external to the program as a
separate load module. In the process of mapping, data fields in the application program and fields in the
map are correlated with data fields on the terminal’s screen. The map uses two types of fields, constant
and variable. A "mapped terminal write" transfers constant fields from the map and variable fields from
the application program to the terminal. A "mapped terminal read" transfers those variable fields that have
been modified at the terminal to the application program. On output, the application program can override
various map characteristics such as field atributes, cursor location, sound alarm, etc. Modifications to field
attributes are done in reference to field names. Mapping optionally informs the application program, by
field name, of the fields read and the fields incorrectly entered at the terminal.

A map can be created using the UMAP utility (see the Com-plete Utilities documentation) or assembled
and linked using the mapping macros(see the section Map Creation Using the Macros later in this
chapter).

6

Terminal MappingTerminal I/O Functions

After the map has been created, the application program can perform terminal I/O using the map by
specifying:

1. Mapping Request Control Blocks (MRCBs)

2. The location of the desired data within the application program’s working storage area (optional)

3. The location of a Field Control Table (FCT) within the application program which contains field
names and dynamic modification of field display characteristics (optional)

The application program consideration(s) for using a map and the process of creating a map are discussed
in the remainder of this section. Further information on the use of the UMAP utility program can be found
in the Com-plete Utilities documentation.

Map Contents

A map contains two types of data: global data and field data. Some of the information contained within
the map may apply only to one type of 3270 (that is, the extended attributes of the 3279 graphics terminals
are ignored for non-graphics 3270 terminals of the same size).

Global Data

Global information pertains to how the mapping system will deal with the map as a whole. Global data
includes:

The map name - used to verify that the correct map is being used

The device code - used to signify the device type for which the map was designed

Terminal Control Codes (TCCs) - used to specify control options to be used by the mapping
system when using the map to write or read data such as Erase-the-Screen

Global extended 3279 graphics attributes

The TCCs within a map can be overridden at execution time by specifying overriding TCCs within a field
of the MRCB. The TCCs are defined inTerminal Control Codes. The extended graphics attributes can be
overridden by field in the map or, at execution time, by field in the FCT.

Field Data

Field information pertains to how the mapping system will deal with a specific field. A field within a map
can be defined as constant or variable.

A constant field is a field whose fixed text resides within the map. The application program cannot vary
the text sent to the terminal or receive the text received from the terminal; however, the application
program can modify the display characteristics of constant fields. Constant fields are used for displaying
text whose contents are independent of the programs executing (that is, titles of a screen and field
prompts).

A variable field is a field whose data resides within the application. Variable field data is moved by a
mapped write (WRTMC, WRTM) call from the application storage to the terminal screen. If the field is
defined as unprotected (that is, the data can be modified), the data entered on the screen can be returned to
the application program with a mapped read (READM) call.

7

Terminal I/O FunctionsMap Contents

Both constant and variable fields share the following characteristics:

An optional 6-byte field name;

A screen location and field length;

Field Description Codes (FDCs). The FDCs define the display and usage characteristics of a field.
At execution time, the FDCs can be altered by specifying an override in the Field Control Table.
FDCs describe characteristics such as high or normal display intensity, protected or unprotected.
display or non-display, and required or Optional.
Some FDCs are not valid for constant fields (e.g., unprotected, required, etc.). SeeField Descriptor
Codes for the definition of the FDCs;

Color code for 3279 graphics terminals;

Symbol set IDs for GDDM symbol set modules.

Variable fields have the following additional characteristics:

Data buffer offset. The location of the data to be extracted for the write and the location for
returning data from the terminal are determined by adding the data buffer offset to the address
passed as the data buffer argument;

Data types. Variable fields can be alphanumeric, zoned decimal, packed decimal, binary fullword,
or binary halfword;

Number of decimal places. The number of decimal places is used to display packed decimal,
binary fullword, or binary halfword fields;

Internal length. The internal length of packed decimal fields must be defined.

Map Names

The map is stored into the load library under a six-character name. The first four characters are the same
as those specified in the name field of the UMAP menu or the MAPSTART macro statement. The last two
characters are taken from the device code of the terminal for which the map was designed. UMAP
displays this device code after the name field or it is taken from the DEVCODE argument of the
MAPSTART macro.

For those applications/installations with performance problems due to excessive reloading of specific
maps, the map can be placed into the resident list of Com-plete. Mapping will search first the thread,
second the resident area of Com-plete, and finally the load library chain.

For maps accessed via the resident area of Com-plete that require scaling (see the following section),
mapping will copy the map to the thread temporarily, scale the map, use the map, and free the thread
storage.

Device-Specific Mapping and Scaled Mapping

This section describes the use of the device code and choice of using maps in a device-specific manner or
in a scaled manner. Terminal Device Type Codes gives the device codes associated with each screen size
of 3270 terminals.

8

Map NamesTerminal I/O Functions

Assume that your application uses only one screen. If this application program is required to operate from
only one specific terminal device type, the 24-line 80-column F2, then one map is Required.
You could name this map XXXXF2 and set the MRCB as follows:

Map name is ’XXXX’.
Version is ’B’.
Filler is three spaces.
Mapvers is space. (See Mrcb Exception Codes for MRCB format)

Mapping concatenates the XXXX to the device type, resulting in XXXXF2. If the application is executed
from a different device type (for example, an F5), the application needs an XXXXF5 map with the same
field names and characteristics. These maps are device-specific; a unique map exists for each terminal
type, as necessary.

In some situations, having a unique map for each device type allows the application to display more data
on larger screens and less data on smaller screens.

Some applications take no advantage of the differences in 3270 screen sizes. If the screen layout of the
map fits within the dimensions of another device type, the application can request mapping to use map
XXXXF2 but scale the map to fit on the current device. To request scaling, set the MRCB as follows:

Map name is six characters, i.e., ’XXXXF2’.
Filler is two spaces.
Mapvers is ’B’.

Note that scaling relocates the start of each field. Users of scaling should not use fields that wrap off of the
right side of the screen and back on to the left.

Program Concepts

The application program must provide an MRCB in the working storage area of the application program.
The MRCB contains the name of the map.

The program can optionally provide the FCT, if it is necessary to dynamically modify the display
characteristics of specific fields or to receive more detailed information about input fields.

Since one map defines both the output and input handling, a typical application program performs a
write-mapped call followed by a read-mapped call using the same map and same MRCB.

When a mapped read or write call is executed, mapping determines the name of the map by concatenating
the MRCB map name field with the terminal device code. Mapping determines the location of the map
and loads the map into thread storage, if necessary.

The manner in which individual fields are processed is determined by information passed in the MRCB
and the optional buffer and FCT parameters. The MRCB is used to indicate that individual fields in the
map are to have their processing characteristics controlled by the application program. When this
indication is given, the CALL statement normally supplies the FCT parameters in which the overriding
characteristics of the desired fields are specified.

The WRITE-OPTION of the MRCB allows the application program to indicate which of the following
methods mapping should use:

9

Terminal I/O FunctionsProgram Concepts

Write all fields defined in the map, optionally overriding the display characteristics for those fields
entered in the FCT;

Write only those fields specified in the FCT, optionally overriding the display characteristics.

The READ-OPTION of the MRCB allows the application program to choose among the
following:

Read all readable fields;

Read only those fields specified in the FCT.

Note that a mapped write with no FCT and no buffer can be used to write only the constant fields.

The MRCB, FCT, and CALL statement conventions are discussed in detail in the following sections.

MRCB

The MRCB is a working storage area defined within the application program. It contains the name of a
map, terminal control information, and mapping field control information. Note that an application
program may contain more than one MRCB, but only one MRCB is Required.

Users are provided MRCB copy code for COBOL, PL/I, and Assembler. The format of the MRCB, along
with a description of each of its fields, is found inMapping Request Control Block (MRCB).

In Assembler language, a map can be coded in line in the program and located immediately behind the
MRCB. The program can then be assembled with the map located directly in line with the program, thus
saving a load operation for the map. If this technique is to be used, the MAP-CONCAT fields in the
MRCB must be initialized to a C.

Another method for specifying that the application has the map in storage is to set the MAP-CONCAT
field in the MRCB to A and the MAP-ADDRESS field of the MRCB to the location of the map.

There is no logical restriction on how many maps a program can use. From a performance standpoint
however, if multiple maps are to be used, it may be desirable to make some or all of them resident in the
thread region of the application program. The MAP-COUNT field of the MRCB is used to request this
option. This value literally creates a queue of thread resident maps. The number of entries in the queue is
equal to the number specified in MAP-COUNT. If more maps are referenced than the queue can
accommodate, the queue of maps is treated as a "first-in-first-out" queue. A map-count of zero signifies
that the map should be used and then deleted.

Since the MRCB is used to pass control information back and forth between the application program and
Com-plete, some of the MRCB fields must be set by the application program and some by Com-plete.
Consequently, the MRCB is required for all mapping requests. The default value for all MRCB fields is
spaces, with the exception of the MAPNAME and VERSION fields.

FCT

The FCT is defined within the application program in the working storage section. Its function is to enable
the application program to change the display characteristics of individual fields and/or to receive more
detailed information about each field.

10

Program ConceptsTerminal I/O Functions

The FCT, if defined, must consist of one FCT entry per field to be individually processed. Each entry is
referred to as an FCTE.

If the FCT is not a parameter in the CALL statement, each field in the map is assumed eligible for writing,
and all unprotected fields in the map are eligible for reading.

Each FCTE must be defined in one of three formats:

Short format of 6 bytes, or:

Long format of 10 bytes, or:

Extended format of 13 bytes.

Note that new applications must be coded using the extended format. The short and long forms have been
retained only for compatability with existing programs.

The short form contains only field names. The long form contains the field name, an input flag, and a
Field Descriptor Code (FDC) override field. The extended form also contains the override color and
override symbol set ID for 3279 graphics. The format used must be indicated in the MRCB.

The format for each type of FCTE is defined in Field Control Table (FCT).

Buffer Area

The buffer area(s), or record area, into which data is to be placed during a read operation and from which
data is to be obtained during a write operation must be defined within the application program.

When an application program uses an existing file record definition, the programmer can specify the data
offset during map creation. If an existing record format is not being used, use the UMAP edit copy code
function to create a buffer.

Output Field

WRTM is the mapping function used for writing information or data to the terminal. This function is
described in detail later in this chapter in the section entitled "WRTM".

Output processing involves global/field information from the map and dynamic overrides from the
application program. Terminal Control Codes (TCCs) are stored in the map when the map is created, and
they are overridden by specifying TCC-OVERRIDEs in the MRCB.

The TCC codes allow for the following sets of control:

E/N E: Erase unprotected fields prior to the write. N: Specifies that these fields will
not be erased. An application program can wish to rewrite only specific fields and
have the remaining unprotected fields erased or not.

A/Q A: Sound audible alarm at terminal. Q: Alarm is not sounded.

P/S P: Start printer. S: Printer is not started.

K/M K: Turn off the terminal’s modified data tags. The modified data tags indicate
that an unprotected field has been modified.

R/L R: Unlock the keyboard. L: Lock the keyboard.

11

Terminal I/O FunctionsProgram Concepts

TCC codes affect the erasure and reformatting of the constant fields. In the following discussion,
reference is made to options for which Com-plete determines whether an action is necessary. If these
options are selected (B and F), Com-plete determines if the same application program and map was used
for the previous write to the terminal and that no message switching, paging, terminal clear operation or
program fetch was done. This determination should be sufficient to keep the screen correctly displayed
with a minimum of rewriting of constant fields. Application programs that involve overlaying of mapped
screens may need to force no erase or force the formatting of constant fields.

B/W B specifies that Com-plete should determine whether the screen
requires erasing before the write. W specifies that the screen should
not be erased.

C/D/F F specifies that Com-plete should determine if constant fields need to
be rewritten. Specify D to force mapping to do no rewriting of the
constant fields, or C to always force writing of the constant fields.

With these functions in mind, the application programmer can use the WRTM function to write the
following information to the terminal:

Write only those fields defined as constants in the map.

This option can be forced by not passing the buffer area or the FCT when executing the WRTM
function.

Write all the fields defined in the map, (optionally) overriding the display characteristics for those
fields entered in the FCT.

This option can be forced by entering a space or an A in the WRITE-OPTION field of the MRCB,
passing the buffer area in the WRTM function, and (optionally) passing the FCT argument.

Write only those fields specified in the FCT, (optionally) overriding the display characteristics.

This option is forced by entering an O in the WRITE-OPTION field of the MRCB and passing
both the buffer area argument and the FCT argument.

Output validation is performed for data being written to the terminal to determine whether the program
data area field contains data that can be properly edited and moved to the map field entry. Specific output
validation performed is summarized below.

Alphanumeric and zoned decimal fields:

Transferred from the program data area without validation.

Packed and binary fields:

If the field contains invalid data, the program is terminated abnormally.

Leading zeros are suppressed.

If indicated in the map, a decimal point is edited into the display.

12

Program ConceptsTerminal I/O Functions

A "-" immediately precedes either the high order digit or the decimal point, if the field is negative.

For zero value fields, a single zero or the decimal point and all decimal places are displayed.

A numeric attribute is forced, unless the field is specified as skip or protected (FDCs of S or P).

If a value is too large to fit in the map display field, the display field is filled with asterisks.

Input Field Processing

READM is the mapping function used for processing input data from mapping requests. This function is
described in detail in this section.

Input fields are processed according to location (that is, row and column) on the screen; therefore, the map
used to read them should correspond exactly to the formatted screen. This can be easily accomplished by
using the same map to both read and write the screen.

Input validation is automatically performed for data being read from the terminal to determine whether the
input data can be properly edited and moved to the program field areas. The specific input validation
performed is summarized below.

Alphanumeric fields:

Validation is performed for length only.

If more data is entered than the program-defined field can accommodate, an
overflow exception condition will be posted.

If not enough data is entered to fill the field, the data will be left-justified and
space-filled.

Zoned decimal fields:

Validation is for characters 0 - 9.

Data can contain leading and/or trailing blanks.

Data in the program data area will be right-justified and zero-filled.

Possible exceptional conditions posted are INVALID DATA and OVERFLOW.

Packed fields:

Input can have leading and/or trailing blanks.

If negative, the first digit or the decimal point must be preceded by a "-".

Decimal point placement is indicated by a period.

Data must be numeric, except as indicated above. Data is aligned, converted, and
stored in the program data field area.

13

Terminal I/O FunctionsProgram Concepts

Possible input exceptions posted are INVALID DATA, OVERFLOW, and
UNDERFLOW.

Binary fullword fields:

Negative numbers are stored in two’s complement form.

Input can have leading and/or trailing blanks.

If negative, the first digit or the decimal point must be preceded by a "-".

Decimal point placement is indicated by a period.

Data must be numeric, except as indicated above. Data is aligned, converted, and
stored in the program data area.

Possible input exceptions posted are INVALID DATA, OVERFLOW, and
UNDERFLOW.

Binary halfword fields:

Negative numbers are stored in two’s complement form.

Input can have leading or trailing blanks.

If negative, the first digit or the decimal point must be preceded by a "-".

Decimal point placement is indicated by a period.

Data must be numeric, except as indicated above. Data is aligned, converted, and
stored in the program data area.

Possible input exceptions posted are INVALID DATA, OVERFLOW, and
UNDERFLOW.

The MRCB can contain a variable length feedback area. If so, this area is used to
indicate input errors from the terminal. Data entered that conflicts with the field
definition for the mapping field in which it is entered is not returned in the buffer
area. Instead, the name of the mapping field, followed by an exception code, is
listed in the feedback area. The MRCB feedback area exception codes are
defined in Mrcb Exception Codes.

To illustrate the use of exception codes in the MRCB feedback area, consider the
following example where the underscored data was entered at a terminal.

Gross Pay .01 SSN A00000000

If the field GPAY was defined as having less than three decimal places in the map, and if
the field SSN was defined as a numeric field, then the MRCB feedback area would
contain:

GPAY UF,SSN NN,

14

Program ConceptsTerminal I/O Functions

Note that each field entered in error is placed in the MRCB feedback area. The format of
each entry in the feedback area is illustrated in the following figure. The number of fields in the feedback
area is indicated by the MRCB’s error-fields. Note also that the feedback area is not initialized between
reads.

FIELD-NAME OFFSET LEN Description

ERROR-FIELD 0 6 Name of the field in error

FILLER 6 1 Blanks

ERROR-CODE 7 2
Error codes, as described in Mrcb Exception
Codes

In addition, three fields within the MRCB are updated. The MRCB’s CURSOR-IN field
contains the input field name cursor location. The FIELDS-READ and ERROR-FIELDS fields are used to

indicate the number of fields returned to the application and the number of errors detected.

If an error is detected while processing a read function, a return code is posted in the
return code field of the MRCB and in theretcodeargument. The data for the field or
fields in error is nottransferred to the program data area.

In addition to the input exceptions posted in the MRCB feedback area, an input indicator
is placed in each input flag field in the FCTE, if the long or extended format of the FCTE is being used
(unless the FCTE is specified as ignored or protected). The codes returned are listed
inField Control Table.

Map Creation Using Macros

Before creating a map, you should design a separate display layout of each map for each terminal device
type to be used. Currently, the only device types supported by mapping are 3277 models 1 and 2, 3278
models 1 through 5, and the graphics terminal or compatible devices. These device types are referred to as
formattable devices; other device types are non-formattable devices.

After the map layouts have been designed, the macro statements defining the appropriate maps can be
written. For example, consider the following display for which a map definition is desired:

NAME: fred schwartz
ADDRESS: 1208 sw street

The map definition used to generate this display is:

MPO1 MAPSTART F2
 MAPF ,’NAME:’
NAME MAPF (1,10),14
 MAPF (2,1),’ADDRESS:’
ADDR MAPF ,20
 MAPEND
 END

In the above sample map definition, note the entries accompanying the MAPSTART macro statement.
The entry MP01 is the name of the map and the entry F2 is a terminal device type designator.

15

Terminal I/O FunctionsMap Creation Using Macros

After the map has been defined, it is ready to be assembled and link edited. The assembly of the map
should be performed using the ALGN option of the assembler or the results may be unpredictable.

MAPSTART Macro

The MAPSTART macro is used to identify (name) the map, specify the device class code of the
terminal(s) on which the map is to be used, and specify optional terminal control information.

The format of the MAPSTART macro is:

name MAPSTART [devcode]
 [,FDCDEF=]
 [,TCC=]
 [,COLDEF=]
 [,PSDEF=]
 [,TYPEDEF=]

All the arguments, except name, are Optional.
These arguments are:

name Required.Default: None.The name of the map. /The name must be exactly four
or six alphanumeric characters in length and must begin with an alphabetic
character.

devcode OptionalDefault: F2 The device class code of the terminal for which this map
is to be used.The devcode must be one of the following:

F1 for 3270 model 1 or compatible device (12 lines
x 40 columns).

F2 for 3270 model 2 or compatible device (24 lines
x 80 columns).

F3 for 3278 model 3 or compatible device (32 lines
x 80 columns).

F4 for 3278 model 4 or compatible device (43 lines
x 80 columns).

F5 for 3278 model 1 or compatible device (12 lines
x 80 columns).

F6 for 3278 model 5 or compatible - (27 lines x 132
columns).

FDCDEF Optional.Default: DTO; no extended attributes.The default to be used for the
Field Descriptor Code (FDC) argument of the MAPF macro as used in this
map definition.The available FDCs are listed in Field Descriptor Codes .

TCC Optional.
Default: BEKQRSW The Terminal Control Codes (TCCs) to be used when
performing write commands. See Terminal Control Codes for further details.
If any TCCs are specified, at least one of the following pairs of TCC codes
must also be specified: AQ, BW, DF, EN, KM, LR, or PS.

16

Map Creation Using MacrosTerminal I/O Functions

COLDEF Optional.
Default: No default color assigned.The default color for the COL argument of
the MAPF macros used in this map definition and the background color for
the entire screen are:
BL
RE
PI
GR
TU
YE
NE
or blank, which applies to 3279 graphics terminals only.

PSDEF The default program symbol set ID for the PS argument of the MAPF macros
used in this map definition.

TYPEDEF Optional.
Default: AThe default for the TYPE argument of the MAPF macros used in
this map definition:

A Alphanumeric

F Fullword

H Halfword

P Packed

Z Zoned decimal

MAPF Macro

The MAPF macro is used to define each field to be displayed, including title fields and fields from the
application program.

The specification of row and column locations for display fields must allow for a one-character filler entry
that precedes each field in the display. For formattable devices, this field is reserved for the
hardware-controlled attribute byte. For non-formattable devices, a blank is inserted in this location. This
permits identical displays for both formattable and non-formattable devices.

The format of the MAPF macro is:

[name] MAPF [(row,column)]
 {,length1|,’constant’}
 [,length2]
 [,repeat]
 [,DECPLAC=]
 [,FDC=]
 [,COL=]
 [,PS=]
 [,OFFSET=]
 [,TYPE=]
 [,ITR=]

17

Terminal I/O FunctionsMap Creation Using Macros

All the arguments are optional except length1 andconstant, between which a choice must be made. Note
that the absence of the (row,column) argument must be shown by a comma. Fields must be specified in
sequence, by column, within row, and can not overlap.

The arguments are:

name Optional. Default: The field will be unnamed.The name is used in the
FCT for field modification and feedback and in the MRCB feedback
area during input field exception processing.The name must begin with
a letter and cannot exceed six characters in length.

(row,column) Optional.
Absence of this argument must be specified by a comma.Default: The
field is concatenated to the previously-defined field. If this is the first
field defined, it is placed in location (1,1). The terminal display
location for this field. The first terminal display position is (1,1). If
(row,column) is omitted, the field immediately follows the previous
field in this display. Note that an apparent space exists because of the
attribute byte.

length1 Optional. Default: The length is derived from the length of constant, if
entered; otherwise, it must be specified, or an error is generated.The
display length for the field. For alphanumeric (type A) and zoned
decimal (type Z) fields, it also specifies the data area field length
within the application program using this map. This length does not
include the filler byte.

constant Optional. Default: If omitted, length1 must be specified.A character
string to be placed in the display field. The display length of the field
is determined by the number of characters entered in this argument.
The maximum number of characters allowed is 255. The FDC for this
field is forced to include S for format table devices.

length2 Optional.
Default: Must be specified with packed fields.The data field length, as
it exists in the application program for packed (type P) fields. The
length is specified in bytes. The field cannot exceed eight bytes in
length.

repeat Optional. Default: 1The number of times, plus 1, that the constant is to
appear in the terminal display in the same field. The length1 value for
the field is derived by multiplying the length of the constant by the
repeat factor.

DECPLAC Optional. Default: 0 The number of decimal places in this field. This
argument can only be specified if the TYPE is P, F, or H for this field.
This argument cannot be specified if the constant argument was
given.This argument is used to align the decimal point on input fields,
and for editing decimal points on output fields. The maximum value is
15.

18

Map Creation Using MacrosTerminal I/O Functions

FDC Optional. Default: DOTY The Field Descriptor Codes to be associated
with this field. More than one FDC can be given. In case of conflict,
the last one in the string takes precedence. If the constant argument
was given, either S or P is assumed and cannot be overridden;
however, any of the other allowable codes may be specified for the
class of device for which the map is being used.

COL The two-character color attribute to be associated with this field on a
3279 graphics terminal. The default is set from the COLDEF argument
of the MAPSTART macro. Values: BL//RE//PI//GR//TU//NE or blank

PS The one-character programmed symbol set ID to be associated with
this field on a 3279 graphics terminal. The default is set from the
PSDEF argument of the MAPSTART macro.

OFFSET Optional. Default: The data field in the program working storage area
is assumed to be concatenated to the last field specified with a positive
offset, whether or not the offset was implied or specified.The number
of bytes, either negative or positive, from the beginning of the buffer
I/O area to the location of this field within the application program.
The numerical value can range from -32768 to +32767. By adding this
value to the data area argument passed in the READM or WRTM call,
the location of the field in the program can be determined.

TYPE Optional. Default: "A" or the value specified in the TYPEDEF
argument of the MAPSTART macro.The type of field within the
program data area.This argument must not be specified if the constant
argument is given.

A Alphanumeric

F Binary fullword

H Binary halfword

P Packed

Z Zoned decimal

K Kanji

ITR Optional Default: OFFSpecifies whether input translation is to be
performed on this field. This argument can only be specified for
alphanumeric-type fields.

MAPEND Macro

The MAPEND macro allows for error detection, end-of-map processing, and the display of information
about the map. The MAPEND macro is required.

The format of the MAPEND macro is:

MAPEND

19

Terminal I/O FunctionsMap Creation Using Macros

Advanced Facilities

Structured Fields

Structured fields are used to convey additional control functions and data to or from the display terminal.
Write Structured Fields (WSF) is the only 3270 command that can be used to send structured fields from
the application to the display. This command may be used only for devices that support extended data
stream. Devices that do not support WSF will reject this command with SENSE X’1003’.

Functions that can be accepted by display devices include partition/screen handling, outbound text or data
streams and partition read. The display uses and AID (X’88’) to indicate inbound structured field
functions.

WSF commands can be issued using theWRTSFandWRTSFCfunctions. The application program must
provide the complete command.WRTSFC followed by a device-dependent input function (READS)should
be used if the command specifies an application-initiated read (Read Partition or Read Buffer).

For Read Buffer the application program can use the special functionREADB instead of WRTSFC.
READB has no parameters and automatically sends the Read Buffer command.

For more information about WSF refer to the IBM 3270 Information Display System Data Stream
Programmer’s Reference (#GA23-0059-1), and the 3274 Control Unit Description and Programmer’s
Guide(#GA23-0061-2).

Periodic Redisplay

Output functions cause the application program to be ROLLed OUT. A time parameter (Default=0) can be
specified to tell Com-plete the elapsed time before the application program is put back in the ready-to-run
queue. This feature can be used in non-conversational output requests to refresh a screen at periodic
intervals either with updated data or a constant message. The TESTAT function (test for attention
interrupt) can immediately follow the timed output function to terminate the output loop. Refer to
theMiscelaneous Functions chapter in this documentation for a description ofTESTAT.

Note:
Application programs using this feature should not run on devices that do not support attention interrupts
such as CICS Transaction Routing or LU6.2 sessions since there will be no way to interrupt the loop.

Time-out

For conversational output functions the application program is put in the ready-to-run queue only after the
reply from the partner or device is received. If the time parameter is specified the application program, as
in non-conversational functions, is put in the ready-to-run queue after the specified time is elapsed. If the
application issues a subsequent input function before Com-plete received the reply no data will be
returned to the application program, thus identifying a time-out. The application program can then take the
necessary actions (backout, terminate, etc.). This feature is helpful to avoid program hangs on LU6.2
sessions or pseudo-terminals when the partner application fails to respond.

20

Advanced FacilitiesTerminal I/O Functions

LU6.2 Transaction Programs
Com-plete handles LU6.2 Server Transaction Programs (TP) as normal online programs. From the user’s
point of view they just communicate with the partner transaction program instead of a terminal.

To start a server TP in Com-plete the partner (client) TP must specify the program name (up to 8
characters) in the ALLOCATE verb. Com-plete receives this TPname together with the logon information
in the ATTACH FMH-5. The user is then logged on and the TP started (as if *TPname was entered at a
display terminal). If the security information is incorrect, an error will be returned to the partner TP.

Server Tps always start in RECEIVE State and must issue a READ function. The 1st READ will return
the program name followed by the first Logical Record (Basic Conversation) or Mapped Conversation
Record.

Unlike display devices that send 1 screen at a time, LU6.2 TPs may send chains containing more than 1
logical record/mapped conversation record but only one record can be received for each input request.
Since input requests may be issued only after conversational output (except for the first input and when
reread is used) the TP must issue a conversational output request without data so a subsequent input
request can receive the next record. Note that this feature is valid only for LU6.2 sessions.

When in SEND State, several records can be sent in 1 chain by using non-conversational output functions
(Write Return). Write Conversational causes a CD (Change Direction) to be sent to the partner and the
conversation state is changed to RECEIVE.

Write Done terminates the conversation (implicit DEALLOCATE).

Restrictions

Com-plete V5.1 Communication Functions currently provide limited LU6.2 support since the API -
originally designed for terminal I/O - does not provide some parameters and functions required for full
LU6.2 support. An extension to the API is planned for future releases.

LU6.2 verbs like ALLOCATE, CONFIRM, CONFIRMD and parameters like Conversation ID
(CONVID), Partner LU Name, MODENAME, Conversation Type currently cannot be explicitly specified
or received due to API restrictions what leads to some programming limitations:

LU6.2 Transaction programs can currently run only as SERVER programs. All needed parameters
are provided by the client in the ALLOCATE verb.

Currently there is no way to pass control information - conversation parameters (modename,
synclevel, session type), conversation states, what_received - to the TP. The programmer must
know almost the exact data flow when designing the application to comply to the LU6.2 protocol.
For example, the programmer must know exactly how many records will be contained in each
chain and when a CD is expected so the TP can send data to the partner. If the conversation is in
RECEIVE state Com-plete will ignore any data specified in the conversational output until all
records of the current chain were received.

Conversational output, when in SEND state, cause Com-plete to send data + CD to the partner,
thus entering RECEIVE state. This must currently be (mis) used to force Com-plete to receive the
next record of a chain when in RECEIVE state. Any data specified in these dummy requests is
ignored. The application program cannot force SEND State (SEND ERROR) when in RECEIVE
state.

21

Terminal I/O FunctionsLU6.2 Transaction Programs

A TP may handle only 1 Conversation

Syntax

Device-Independent Input: READ
READ[R] (retcode,area,length[,numleft|,numread[,dlist]])

Device-Dependent Input: READS
READS[R] (retcode,area,length[,numleft|,numread[,dlist]])

Parameters:

R OptionalReread Option.

retcode Required.A fullword where Com-plete places the return code on completion of
the operation.

area Required.
The buffer area in the working storage area of the application program where
Com-plete places the data to be transferred from Com-plete’s buffer.

length Required.A binary halfword containing the number of characters to be
transferred from Com-plete’s buffer. length must be greater than zero.

numleft Optional.A binary halfword where Com-plete places the number of characters
remaining to be transferred before the READ without reread option was issued.

numread Optional.A binary halfword where Com-plete places the number of data
characters actually transferred from Com-plete’s buffer to the application
program buffer when a READ with reread option is specified.

dlist Optional.
Not applicable if the reread otion is used.The working storage area of the
application program which contains the delimiter list to be used with the READ
request. This area must have been previously defined and initialized by the
application program.

Return Codes

Application programs should check the return code for one of the following values:

0 The amount of data transferred to the application program is equal to the
amount of data in Com-plete’s buffer.

4 The amount of data transferred to the application program is less than the
amount of data in Com-plete’s buffer.

8 The amount of data requested for transfer to the application is larger than the
amount of data in Com-plete’s buffer. Existing data is transferred, but extra
buffer space is not modified.

22

SyntaxTerminal I/O Functions

Abends

An abnormal termination can occur during execution of the READ function. Possible causes include:

An invalid argument was specified;

The input area is not in the user area;

The length specified is negative.

Input Using Map: READM
READM[R] (retcode,mrcb,darea [,fct])

Parameters:

R Optional.Reread Option.

retcode Required.A fullword where Com-plete places the return code upon completion of
the operation.

mrcb RequiredThe name of the MRCB as defined in the application program. The
MRCB must be defined on a fullword boundary.

darea Required.The name of the buffer data area in the application program where the
input fields are to be placed.

fct OptionalDefault: None. The name of the FCT in the application program that will
be used according to the MRCB READ-OPTION field and the MRCB
FCTE-FORMAT field and MRCB-FCTE count.

Return Codes

The return code, placed both in the first argument and in the RETURN-CODE field of the MRCB should
always be examined for one of the following values:

0 No input errors were encountered and all required fields were read.

4 At least one error was encountered in the input. The MRCB ERROR-COUNT
field contains the number of fields in error and the number of field names with
exception codes in the feedback area.

8 There is at least one field in error and no feedback area was specified, or if a
feedback area was specified, it is full.

12 The location of a field in the input does not match a field location specified in
the map.

Data can be altered in the application program buffer area regardless of the return code value received.

23

Terminal I/O FunctionsInput Using Map: READM

Abends

An abnormal termination may occur during execution of the READM function. Some possible causes are:

An invalid MRCB was found;

An invalid area argument was specified;

An invalid FCT argument was specified;

The MRCB was not on a fullword boundary.

Device-Independent Output: WRT
WRT[T]{C|D|R} (retcode, area,length[,linelen[,time]])

WRTTx specifies a device-independent output function withText option. All data written to the terminal is
separated into logical words that cannot be partially contained in one line. If the word does not fit
completely on the line it is displayed on the next line.

Device-Dependent Output: WRTS
WRTS[E]{C|D|R} (retcode,area,length[,linelen[,time]])

WRTSEx specifies a device-dependent output operation with prior erasure of thet a 3270-screen.

Special Output

WRTSF - Write Structured Fields

WRTSF{C|D|R} (retcode,area,length[,time[,plist]])

READB - Write "Read Buffer"

READB

Parameters:

24

Device-Independent Output: WRTTerminal I/O Functions

C/D/R Required.Specifies the processing logic for the request. Refer to section
Programming Considerations for more details.

retcode Required.A fullword where Com-plete places the return code upon completion of
the operation.

area Required.A buffer area in the application program containing the data to be
written to the terminal.

length Required.A binary halfword containing the number of characters of data to be
written.

linelen Optional.A binary halfword containing the value of the logical line length to be
used for the terminal. The linelen argument cannot be specified for
terminal-dependent write requests. Default: If linelen is not specified, or if a
linelen of zero is specified, the physical line length of the terminal is used.

time Optional.A binary halfword containing the number of seconds after which the
application program is placed at the bottom of the Com-plete ready-to-run queue
to await dispatching. When used with the "return" form of the WRT request,
control is returned to the application after the specified length of time has
elapsed.When used with the "conversational" form of the WRT request, control is
returned to the application when an interrupt occurs at the keyboard, or after the
specified length of time has elapsed. The time-out can be identified by the fact
that a "read" request returns no data.Default: None. The application program is
placed immediately in the ready-to-run queue.

Return Codes

The application program must examine the first parameter after completion of the request for one of the
following return code values:

25

Terminal I/O FunctionsSpecial Output

0 The write operation was successful.

4 The write operation was terminated by the terminal user, either by pressing the
<CLEAR> key (or its equivalent), or by entering the character string *EOJ. The
application program can optionally choose to ignore this circumstance and
continue normal execution.

8 The terminal operator has terminated the write operation by entering the character
string *CANCEL, or the stack level has been terminated. If a terminal I/O with an
option other than DONE is issued after a return code 8 is received, the application
program is abnormally terminated

Â This value is normally reserved to enable the application program to perform
logical end-of-job processing.

12 A terminal I/O error has occurred. When return code 12 is received, the
application program is abnormally terminated, if another terminal I/O function that
does not specify the DONE option is executed.

16 The output created by execution of the WRT function was destroyed at the
terminal. Normally, this condition occurs if, while viewing the output, a message
was sent to the terminal that destroyed the formatted output, or if the terminal user
temporarily suspended this program in order to retrieve another. The application
program should reissue the WRT request to force a rewrite of the entire screen.
Mapping automatically handles this condition.

Abends

During execution of the WRT function, an abnormal termination may occur. Some possible causes are:

Too many output lines were requested to be written.

The area or length arguments were invalid.

The terminal operator entered a reply of *CANCEL and the application program executed another
WRT request other than WRTxD.

Output Using Map: WRTM
WRTM{C|D|R} (retcode,mrcb [,darea] [,fct])

Parameters

26

Output Using Map: WRTMTerminal I/O Functions

C/D/R Required.
Specifies the processing logic for the request. Refer to section Programming
Considerations for more details.

retcode Required.A fullword where Com-plete places the return code upon completion of
the operation.

mrcb Required.The name of the MRCB as defined in the application program. The
MRCB must be defined on a fullword boundary.

darea Required if the FCT parameter is specified. The name of the buffer data area in
the application program where the output fields are obtained during WRTM
processing.Default: If omitted, the format and fields from the map are written.

fct Optional.The name of the FCT in the application program that is used according
to the MRCB WRITE-OPTION field and the MRCB FCTE-FORMAT field. This
argument need not be specified if all the fields specified in the map are to be
written without modifying their display characteristics.

Return Codes

Return codes are placed both in the first parameter and in the MRCB RETURN-CODE field. Possible
return codes and their meanings are:

0 Normal return.

4 The operator entered *EOJ or pressed the <CLEAR> key.

8 The operator entered *CANCEL in the first field, or the stack level has been
terminated.

12 A terminal hardware error was detected during the WRTM operation.

16 The screen format has been erased. The screen format can be erased by the
terminal that has received a priority message, or destroyed by a user who has
suspended the application.

For formattable devices, it is assumed that the format is destroyed, if a return code other than zero is
passed to the application program. In this situation, the format is automatically rewritten when the next
WRTM request is executed, unless the WRITE-OPTION field of the MRCB specifies the letter O (only).

Abends

An abnormal termination may occur during execution of the WRTM function. Possible causes include:

An invalid MRCB entry was given;

An invalid area argument was specified;

An invalid FCT argument was specified;

The MRCB was not on a fullword boundary.

27

Terminal I/O FunctionsOutput Using Map: WRTM

Extended Graphics Support
Extended 3279 graphics terminals have capabilities not supported by other 3270 models. Mapping support
for these devices is implemented so that:

Maps created for the non-extended will function on the extended models;

The extended attributes will be ignored for non-extended models;

Extended capabilities are defined on the basis of global and field definitions (no subfielding
capabilities).

The extentions include color attributes, customized symbol sets, and extended highlighting.

These features are available with UMAP’s TCC UPDATE function on the global level, and with UMAP’s
ATTRIBUTE UPDATE function on the field level. For example, you can specify the color of the screen
as pink, as well as a different color for each field. As before, these attributes can be overridden by use of
the FCT.

Symbol Sets

Extended graphics terminals can be loaded with multiple user-defined symbol sets, which define the shape
and color of any screen symbol. For further information on the creation of symbol sets, see the IBM
User’s Guide for the Graphical Data Display Manager.

The symbol sets are stored in either VSAM files or STEPLIB libraries as modules with eight-character
names. Rather than specifying an eight-character name, mapping support refers to these symbol sets by a
one-character symbol set ID. Applications must have the device loaded with the correct symbol set and
symbol set ID.

Loading Symbol Sets

Symbol set modules can be loaded under application program control by using Com-plete’s COLINK
function and the Com-plete subroutine U2MASS. For the purposes of testing, the UMAP "LOAD
PROGRAMMED SYMBOLS" function can be used to load symbol sets with an associated symbol set ID,
and UMAP will call U2MASS.

Format

The format for using the COLINK function is:

COLINK (retcode,subroutine-name,entry1)

28

Extended Graphics SupportTerminal I/O Functions

retcode Required.A fullword where Com-plete places the return code upon
completion of the operation.

sub-routine-nameAn eight-character field with value "U2MASS".

entry1 An eleven-byte structure for each symbol set, to be:

Offset Length Contents

0 8 symbol set module name

8 1 symbol set ID

9 1 storage plane requested

10 1 storage plane assigned

where:

symbol set name
Specifies the name of the GDDM-generated symbol set name module.

symbol set ID
Is a one-character ID by which mapping refers to the symbol set.

storage plane
Is a one-character storage plane name, requested as defined in 3270
component description, to be used by the module.

storage plane
Is assigned by U2MASS. used

Examples

Example 1 - Terminal-Independent I/O

This sample program demonstrates the use of terminal independent READ (also with reread option) and
WRT using C, D and R options and also the time parameter. See the program comments for usage details.

COPY CCGLOBS
*
* REGISTERS ON ENTRY:
* R2 = A(COMREG)
* RD = A(CALLER’S SAVE AREA)
* RE = RETURN ADDRESS
* RF = ENTRY POINT
*
SAMP1 CSECT
 USING SAMP1,RC
 STM RE,RC,12(RD)
 LR RC,RF LOAD ENTRY POINT
 ST RD,SAVE+4
 LR R3,R1 SAVE A(PARMS)
 LA R1,SAVE
 ST R1,8(RD)
 LR RD,R1
 LA R0,IPTAREA
 MVC OUTAREA,BLANKS

29

Terminal I/O FunctionsExamples

 MVC PROGNAME,BLANKS
 LA R6,WSTABLE
 LA R5,LASTENT
*
* GET TOTAL LENGTH ENTERED
*
 CM$CALL READR,(RETCODE,IPTAREA,WRLEN,NUMREAD)
 LH R1,NUMREAD
 CVD R1,DWRD
 UNPK TLEN(2),DWRD+6(2)
 OI TLEN+1,X’F0’
*
* SKIP PROGRAM NAME
* *SAMP1 = 6 CHARACTERS + 1 BLANK = 7
*
 CM$CALL READ,(RETCODE,PROGNAME,PRGLEN)
 CLI RETCODE+3,4 AMOUNT OF DATA TRANSFERED IS...
 BH CANCEL LESS THAN REQUESTED. ERROR
 BL DISPLY = REQUESTED ==> PROGNAME ONLY
*
* THE TEST BELOW CAN BE USED INSTEAD OF THE PRECEDING:
*
* CLI NUMREAD+1,7 LENGTH ENTERED > 7?
* BL DISPLY NO - ONLY PROGNAME
*
* READ STARTUP DATA
*
CM$CALL READ,(RETCODE,IPTAREA,WRLEN,NUMLEFT)
 LA R1,20
 CLI NUMLEFT+1,20 RETCODE COULD BE TESTED INSTEAD
 BH MOVE00
 LH R1,NUMLEFT ACTUAL LENGTH TRANSFERED
MOVE00 DS 0H
 BCTR R1,0 FOR EX
 EX R1,MOVE1
 EX R1,MOVE2 MOVE 1ST TABLE ENTRY
 LA R6,20(,R6) INCREMENT POINTER
*
* DISPLAY STARTUP DATA
*
DISPLY DS 0H
 LA R1,L0
 STH R1,WRLEN
 CM$CALL WRTC,(RETCODE,AREA0,WRLEN)
 ICM RF,15,RETCODE
 BNZ END NO, TERMINATE PROGRAM
*
WHOISIT DS 0H
 MVC IPTAREA,BLANKS CLEAR INPUT AREA
 CM$CALL READ,(RETCODE,IPTAREA,RDLEN,NUMLEFT)
 ICM RF,3,NUMLEFT ANY DATA?
 BZ END NO
 CLC IPTAREA(6),RECALL ARE WE RECALLING TABLE ENTRY?
 BE WHICHONE YES, BRANCH
 MVC 0(20,R6),IPTAREA MOVE INPUT TO TABLE
 LA R6,20(,R6) INCREMENT POINTER
WENTER DS 0H
 LA R1,L1
 STH R1,WRLEN
*
* WAIT FOR "TIME" SECONDS FOR OPERATOR REPLY
*

30

Example 1 - Terminal-Independent I/OTerminal I/O Functions

 CM$CALL WRTC,(RETCODE,AREA1,WRLEN,,TIME)
 ICM RF,15,RETCODE IF TIMEOUT TERMINATE
 BNZ END NO, TERMINATE PROGRAM
 CR R6,R5 END REACHED?
 BNH WHOISIT NO
 LA R6,WSTABLE RESTART FROM BEGIN
 B WHOISIT READ NEXT
WHICHONE DS 0H
 LA R8,WSTABLE POINT TABLE START
 OC IPTAREA+7(2),X2F0 BE SURE IT IS NUMERIC
 PACK WRKCOUNT,IPTAREA+7(2)
 ZAP TBLCOUNT,INCRP
 LA R1,9 LOOP COUNT
COMPARE CP WRKCOUNT,TBLCOUNT
 BE FOUND
 AP TBLCOUNT,INCRP
 LA R8,20(,R8)
 BCT R1,COMPARE TRY AGAIN
*
FOUND MVC NAME,0(R8)
 LA R1,L2
 STH R1,WRLEN
*
* DISPLAY RECALLED ENTRY FOR "TIME " SECONDS.
* NOTE THAT KEYBOARD REMAINS LOCKED
*
 CM$CALL WRTR,(RETCODE,AREA2,WRLEN,,TIME)
 ICM RF,15,RETCODE
 BE WENTER
*
END DS 0H
 LA R1,L3
 STH R1,WRLEN
*
* DISPLAY LAST MESSAGE AND TERMINATE THE PROGRAM
*
 CM$CALL WRTD,(RETCODE,AREA3,WRLEN)
*
CANCEL DS 0H
 MCALL ABEND,ABCODE=0001
*
*--
* WORK
*--
MOVE1 MVC OUTAREA(0),IPTAREA
MOVE2 MVC 0(0,R6),IPTAREA
DWRD DS D
SAVE DS 18F
RETCODE DS F
IPTAREA DS CL80
NUMLEFT DS H
NUMREAD DS H
X2F0 DC X’F0F0’
WRLEN DC H’80’
RDLEN DC H’20’
PRGLEN DC H’6’
INCRP DC PL2’1’
TBLCOUNT DC PL2’0’
WRKCOUNT DC PL2’0’
TIME DC H’10’
BLANKS DC CL20’ ’

31

Terminal I/O FunctionsExample 1 - Terminal-Independent I/O

RECALL DC CL6’RECALL’
AREA0 DS 0CL80
 DC C’PROGRAM NAME= ’
PROGNAME DS CL7
 DC X’15’
 DC C’TOTAL LENGTH ENTERED= ’
TLEN DS CL2
 DC X’15’
 DC C’INITIAL DATA= ’
OUTAREA DS CL20
AREA1 DS 0CL73
 DC X’15’
 DC X’15’
 DC C’ENTER A 20 CHARACTER STRING OR ’’RECALL’’’
 DC X’15’
DC C’AND A 2 POSITION NUMBER FROM 1 - 10’
L0 EQU *-AREA0
AREA2 DS 0CL80
 DC X’15’
 DC X’15’
NAME DS CL20
 DC 58C’ ’
L1 EQU *-AREA1
L2 EQU *-AREA2
AREA3 DC C’PROGRAM TERMINATED NORMALLY’
L3 EQU *-AREA3
 DS 0F
WSTABLE DC 9CL20’ ’
LASTENT DS CL20’ ’
*
 LTORG ,
 COPY CCREGS
 COPY CCCOMREG
 END

Example 2 - Terminal-Independent I/O using delimiter list

This sample program does basically the same as the previous one, except that more than 1 table entry can
be entered at each prompt, separated by commas.

COPY CCGLOBS

*
* REGISTERS ON ENTRY:
* R2 = A(COMREG)
* RD = A(CALLER’S SAVE AREA)
* RE = RETURN ADDRESS
* RF = ENTRY POINT
*
SAMP2 CSECT
 USING SAMP2,RC
 STM RE,RC,12(RD)
 LR RC,RF LOAD ENTRY POINT
 ST RD,SAVE+4
 LR R3,R1 SAVE A(PARMS)
 LA R1,SAVE
 ST R1,8(RD)
 LR RD,R1
 LA R0,IPTAREA
 LA R6,WSTABLE
 LA R5,LASTENT

32

Example 2 - Terminal-Independent I/O using delimiter listTerminal I/O Functions

*
* WRITE INITIAL MESSAGE
*
DISPLY DS 0H
 LA R1,L1
 STH R1,WRLEN
 CM$CALL WRTC,(RETCODE,AREA1,WRLEN)
 ICM RF,15,RETCODE
 BNZ END NO, TERMINATE PROGRAM
*
AGAIN DS 0H
 MVC IPTAREA,BLANKS CLEAR INPUT AREA
 CM$CALL READ,(RETCODE,IPTAREA,RDLEN,,DLMLIST)
 CLC IPTAREA(6),RECALL ARE WE RECALLING TABLE ENTRY?
 BE WHICHONE YES, BRANCH
 ICM RF,3,DNUMRET ANYTHING READ?
 BZ DISPLY NO, END OF LIST
 MVC 0(20,R6),IPTAREA MOVE INPUT TO TABLE
 LA R6,20(,R6) INCREMENT POINTER
 CR R6,R5 END REACHED?
 BNH AGAIN NO
 LA R6,WSTABLE RESTART FROM BEGIN
 B AGAIN
*
WHICHONE DS 0H
 LA R8,WSTABLE POINT TABLE START
 OC IPTAREA+7(2),X2F0 BE SURE IT IS NUMERIC
 PACK WRKCOUNT,IPTAREA+7(2)
 ZAP TBLCOUNT,INCRP
 LA R1,9 LOOP COUNT
COMPARE CP WRKCOUNT,TBLCOUNT
 BE FOUND
 AP TBLCOUNT,INCRP
 LA R8,20(,R8)
 BCT R1,COMPARE TRY AGAIN
*
FOUND MVC NAME,0(R8)
 LA R1,L2
 STH R1,WRLEN
 CM$CALL WRTC,(RETCODE,AREA2,WRLEN)
 ICM RF,15,RETCODE
 BZ DISPLY
*
END DS 0H
 LA R1,L3
 STH R1,WRLEN
*
* DISPLAY FINAL MESSAGE AND TERMINATE THE PROGRAM
*
 CM$CALL WRTD,(RETCODE,AREA3,WRLEN)
*
CANCEL DS 0H
 MCALL ABEND,ABCODE=0001
*
*--
* WORK
*--
SAVE DS 18F
RETCODE DS F
IPTAREA DS CL160
NUMLEFT DS H
X2F0 DC X’F0F0’

33

Terminal I/O FunctionsExample 2 - Terminal-Independent I/O using delimiter list

WRLEN DC H’80’
RDLEN DC H’20’
PRGLEN DC H’6’
INCRP DC PL2’1’
TBLCOUNT DC PL2’0’
WRKCOUNT DC PL2’0’
TIME DC H’10’
BLANKS DC CL160’ ’
RECALL DC CL6’RECALL’
AREA1 DS 0CL73
 DC X’15’
 DC X’15’
 DC C’ENTER ONE OR MORE TABLE ENTRIES UP TO 20 CHARS LONG ’
 DC C’SEPARATED BY COMMAS OR’
 DC X’15’
 DC C’’’RECALL’’ AND A 2 POSITION NUMBER FROM 1 TO 10’

AREA2 DS 0CL80
 DC X’15’
 DC X’15’
NAME DS CL20
 DC 58C’ ’
L1 EQU *-AREA1
L2 EQU *-AREA2
AREA3 DC C’PROGRAM TERMINATED NORMALLY’
L3 EQU *-AREA3
 DS 0F
WSTABLE DC 9CL20’ ’
LASTENT DS CL20’ ’
*
DLMLIST DS 0F
DLMQUAN DC H’1’
DNUMRET DC H’0’
DLMNUM DC H’0’
DLIMITR DC C’,’
*
 LTORG ,
 COPY CCREGS
 COPY CCCOMREG
 END

Example 3 - Terminal-Dependent Output

This sample coding illustrates the use of a terminal-dependent output with erase option (WRTSEC). Note
that Buffer addresses must be specified as binary values relative to zero (upper left corner).

SCREEN START
 ...
 ...
 ...
WRTRTN DS 0H
 CM$CALL WRTSEC,(RETCODE,SCREEN,IOLEN)
 OC RETCODE,RETCODE
 BNZ ERROR
 ...
 ...
ERROR DS 0H
 ...
 ...
SCREEN DS 0D
 DC X’C3’ WCC

34

Example 3 - Terminal-Dependent OutputTerminal I/O Functions

 DC X’11’ Set Buffer Address
 DC AL2(0) Relatibe Buffer Address
 DC X’13’ INSERT CURSOR
 DC C’LINE 1’ DATA: LINE 1
 DC X’11’ SBA
 DC AL2(80) RBA
 DC C’LINE 2’ DATA: LINE2
IOLEN DC H’20’
 ...
 ...
 END

Example 4 - Terminal I/O using Map

This example shows the use of macros to create a map for a defined screen layout and it’s usage in
terminal I/O functions.

Screen Layout

 Name:name field.....
 Addr:address field.......
 City:city field........
 SSN: 999999999 EMP.NR.: 9999.99
 Gross Pay: 9999999

 Enter Desired Action: ..action..

Map definition

Below is an example showing how to define the map using macros. For ease of use, however, it is
recommended to create maps using the UMAP Utility.

MAP1F2 START
MAP1F2 MAPSTART F2,TCC=KREBF,FDCDEF=R alphanum., reqd
*
* The field below is non-modifiable and outside the data area
*
ERRDIS MAPF (1,2),30,OFFSET=-40,FDC=S
 MAPF (2,2),’Name:’,FDC=SDKY CONSTANT
NAME MAPF ,20,OFFSET=0,A,FDC=UDKOY ALPHANUMERIC
 MAPF (3,2),’Addr:’,FDC=SDKY
ADDR MAPF ,24,OFFSET=20,A,FDC=UDKOY
 MAPF (4,2),’City:’,FDC=SDKY
CITY MAPF ,24,OFFSET=44,A,FDC=UDKOY
TSSN MAPF (5,2),’SSN:’,FDC=SDKY
SSN MAPF ,9,OFFSET=68,TYPE=Z,FDC=UDKOY ZONED DECIMAL
 MAPF (5,25),’Emp.Nr.:’,FDC=SDKY
EMPN MAPF (05,034),8,OFFSET=77,TYPE=F,FDC=UDKOY BINARY FULLWORD
 MAPF (6,2),’Gross Pay:’,FDC=SDKY
GPAY MAPF ,7,4,OFFSET=85,TYPE=P,FDC=UDKOY,DECPLAC=2 PACKED 7,2
TENT MAPF (9,2),’Enter Desired Action:’,FDC=SDKY
*
REQ MAPF ,10,OFFSET=-40,A,FDC=UDKOY
 MAPEND
 END MAP1F2

Note:
The display characteristics of the constant fields labeled "TSSN" and "TENT" can be modified in the
program since a name is specified.

35

Terminal I/O FunctionsExample 4 - Terminal I/O using Map

Sample Program

SAMP4 CSECT
 USING SAMP4,RC
 ...
 ...
 MVC MRCBNAM,=CL4’MAP1’ MAP MAP1XX
 MVI MRCBVERS,C’B’ VERSION
 MVI MRCBFCTF,C’L’ LONG FCT FORMAT
 MVC MRCBFBAL,=H’30’ LENGTH OF FEEDBACK IS 30
 ...
INIT DS 0H INITIALIZE DATA BUFFER
 MVI ERROR,C’ ’
 MVC ERROR+1(L’ERROR-1),ERROR
 MVC NAME,ERROR
 MVC ADDR,ERROR
 MVC CITY,ERROR
 MVC REQUEST,ERROR
 MVC SSN,=CL9’000000000’
 MVC GPAY,=PL4’0’
 MVC EMPNUM,=F’0’
 ...
 ...
PROMPT DS 0H RESET OPTIONS
 MVI MRCBWOPT,C’A’ A-ALL FIELDS (SAME AS BLANK)
 MVI MRCBROPT,C’A’ A-ALL FIELDS (SAME AS BLANK)
 CM$CALL WRTMC,(RETCODE,MRCB,DATABUFF)
 L RF,RETCODE
 CH RF,=H’16’ WAS SCREEN DESTROYED BY MSG?
 BE PROMPT THEN REWRITE THE SCREEN
 LTR RF,RF
 BNZ EOJ
 CM$CALL READM,(RETCODE,MRCB,DATABUFF)
 L RF,RETCODE
 LTR RF,RF OK?
 BZ GETCOMM YES, GET COMMAND
 MVC ERROR,MRCBFEED SHOW ERROR
 B PROMPT AND REWRITE SCREEN
*
GETCOMM DS 0H GET COMMAND FROM OPERATOR
 XC ERROR,ERROR CLEAR MESSAGE
 LA R0,COMFCTES NUMBER OF FCTE’S
 STH 0,MRCBFCTC SET COUNT
 MVI MRCBWOPT,C’O’ LETTER O, SAYS O-NLY
 MVI MRCBROPT,C’O’
 CM$CALL WRTMC,(RETCODE,MRCB,DATABUFF,COMMAND)
 L RF,RETCODE
 CH RF,=H’16’ WAS SCREEN DESTROYED BY MSG?
 BE GETCOMM THEN REWRITE THE SCREEN
 LTR RF,RF
 BNZ EOJ
 CM$CALL READM,(RETCODE,MRCB,DATABUFF,FCT=COMMAND)
 L RF,RETCODE
 LTR RF,RF OK?
 BZ PROCESS YES, PROCESS COMMAND
 MVC ERROR,MRCBFEED SHOW ERROR
 B GETCOMM AND REWRITE SCREEN
*
PROCESS DS 0H
 ...
 ...
 MVC ERROR,=CL30’RECORD SUCCESSFULLY UPDATED’

36

Example 4 - Terminal I/O using MapTerminal I/O Functions

 ...
 ...
MESSAGE DS 0H DISPLAY MESSAGE
 MVI MRCBWOPT,C’A’ A-ALL FIELDS (SAME AS BLANK)
 MVI MRCBROPT,C’A’ A-ALL FIELDS (SAME AS BLANK)
 MVC MRCBCOUT,=CL6’ ’ BLANK CURSOR OUT FIELD
 LA R0,SHOFCTES NUMBER OF FCTE’S
 STH R0,MRCBFCTC SET COUNT
 CM$CALL WRTMC,(RETCODE,MRCB,DATABUFF,SHOONLY)
 L RF,RETCODE
 CH RF,=H’16’ WAS SCREEN DESTROYED BY MSG?
 BE MESSAGE THEN REWRITE THE SCREEN
 LTR RF,RF
 BNZ EOJ
 B INIT
*
 ...
 ...
EOJ DS 0H
 CM$CALL EOJ
*
*--
* WORK AREA
*--
 ...
 COPY CCMRCB FROM SOURCE LIB
COMMAND DS 0F
* NNNNNN FIELD NAME
* T TAG
* FDC OVERRIDING FDC
 DC CL10’ENTER D ’ CONSTANT DISPLAY
 DC CL10’ACTION UD ’ DISPLAY, UNPROTECT
COMFCTES EQU *-COMMAND/10
*
SHOONLY DS 0F
 DC CL10’NAME P’ NAME PROTECT
 DC CL10’ADDR P’ ADDR PROTECT
 DC CL10’CITY P’ CITY PROTECT
 DC CL10’SSN P’ SSN PROTECT
 DC CL10’NUMBER P’ EMPLOYEE PROTECT
 DC CL10’GPAY P’ GROSS PAY PROTECT
 DC CL10’ENTER N’ ENTER NON-DISPLAY
 DC CL10’ACTION PD’ ACTION PROTECT, DISPLAY
SHOFCTES EQU *-SHOONLY/10
*
DATABUFF DS 0F WRTMC, READM DATA BUFFER
ERROR DC CL30’ ’
REQUEST DC CL6’ ’
DRECORD EQU * RECORD BUFFER
EMPNUM DC F’0’
NAME DC CL20’ ’
ADDR DC CL24’ ’
CITY DC CL24’ ’
SSN DC ZL9’000000000’
GPAY DC PL4’0’
 ...
 ...
*
 LTORG ,
 COPY CCREGS
 COPY CCCOMREG
 END

37

Terminal I/O FunctionsExample 4 - Terminal I/O using Map

Example 5 - LU6.2 TP

This example shows the use of I/O functions in LU6.2 sessions.

 COPY CCGLOBS
**
*
* SAMPLE PROGRAM FOR LU6.2 SESSION
*
**
*
* REGISTERS ON ENTRY:
* R2 = A(COMREG)
* RD = A(CALLER’S SAVE AREA)
* RE = RETURN ADDRESS
* RF = ENTRY POINT
*
**
SAMP5 CSECT
 USING SAMP5,RC
 CMNAME BRANCH=OS
 STM RE,RC,12(RD)
 LR RC,RF LOAD ENTRY POINT
 ST RD,SAVE+4
 LR R3,R1 SAVE A(PARMS)
 LA R1,SAVE
 ST R1,8(RD)
 LR R3,R1 SAVE A(PARMS)
 LA R1,SAVE
 ST R1,8(RD)
 LR RD,R1
 MVC PROGNAME,BLANKS
*
* READ PROGRAM NAME
* *SAMP5 = 6 CHARACTERS + 1 BLANK = 7
*
 CM$CALL READ,(RETCODE,PROGNAME,PRGLEN)
 CLI RETCODE+3,4 AMOUNT OF DATA TRANSFERED IS...
 BNH READ1 LESS THAN REQUESTED. ERROR
 BAL R9,CANCEL
*
* READ 1ST RECORD
*
READ1 DS 0H
 CM$CALL READ,(RETCODE,RECORD1,RDLEN,NUMLEFT)
 OC RETCODE,RETCODE
 BZ READ2
 BAL R9,CANCEL
*
* READ 2ND RECORD FROM CHAIN
* WRTC WITH LENGTH 0 MUST PRECEDE EACH READ
*

READ2 DS 0H
 CM$CALL WRTC,(RETCODE,RECORD1,ZEROLEN)
 OC RETCODE,RETCODE
 CM$CALL READ,(RETCODE,RECORD2,RDLEN,NUMLEFT)
 OC RETCODE,RETCODE
 BZ READ3
 BAL R9,CANCEL
*
READ3 DS 0H

38

Example 5 - LU6.2 TPTerminal I/O Functions

 CM$CALL WRTC,(RETCODE,RECORD2,ZEROLEN)
 OC RETCODE,RETCODE
 CM$CALL READ,(RETCODE,RECORD3,RDLEN,NUMLEFT)
 OC RETCODE,RETCODE
 BZ WRITE
 BAL R9,CANCEL
*
*
* NOW THE WHOLE CHAIN WAS READ AND WE ARE IN SEND STATE
*
WRITE DS 0H
 CM$CALL WRTR,(RETCODE,PROGNAME,PRGLEN)
 CM$CALL WRTR,(RETCODE,RECORD2,WRLEN)
 CM$CALL WRTR,(RETCODE,RECORD1,WRLEN)
 CM$CALL WRTD,(RETCODE,RECORD3,WRLEN)
*
CANCEL DS 0H
 MCALL ABEND,ABCODE=0001
*
*--
* WORK
*--
SAVE DS 18F
RETCODE DS F
PROGNAME DS CL7
RECORD1 DS CL25
RECORD2 DS CL25
RECORD3 DS CL25
BLANKS DC CL25’ ’
NUMLEFT DS H
NUMREAD DS H
ZEROLEN DC H’0’
WRLEN DC H’25’
RDLEN DC H’25’
PRGLEN DC H’7’
*
 LTORG ,
 COPY CCREGS
 COPY CCCOMREG
 END

A matching Client TP that may execute anywhere in the network (must run outside Com-plete) should
contain an equivalent to the following LU6.2 verbs and options:

39

Terminal I/O FunctionsExample 5 - LU6.2 TP

VERB Options

ALLOCATE Remote Luname: Com-plete APPL

MODEname: installation-defined modename

TPname: SAMP5

SECURITY: valid Com-plete user ID and
password

CONVTYPE: MAPPED

SYNCLEVEL: NONE or CONFIRM

SEND AREA: 25 Byte message

LENGTH: 25

SEND same as above

SEND same as above

RECEIVE will retrieve "*SAMP5 ", length=7

RECEIVE will retrieve the 2nd message sent, length=25

RECEIVE will retrieve the 1st message sent, length=25

RECEIVE will retrieve the 3rd message sent, length=25 depending on the
implementation also CEB (DEALLOCATE)

RECEIVE will retrieve DEALLOCATE (if not retrieved in above verb)

DEALLOCATE TYPE=LOCAL (depends on implementation)

40

Example 5 - LU6.2 TPTerminal I/O Functions

	Terminal I/O Functions
	Concepts
	Programming Considerations
	Program Logic
	Output Options
	3270 Terminal I/O Handling
	Device dependent I/O
	Device independent I/O

	Delimiter Lists
	Example

	Terminal Mapping
	Map Contents
	Global Data
	Field Data

	Map Names
	Device-Specific Mapping and Scaled Mapping
	Program Concepts
	MRCB
	FCT
	Buffer Area
	Output Field
	Alphanumeric and zoned decimal fields:
	Packed and binary fields:
	Input Field Processing

	Map Creation Using Macros
	MAPSTART Macro
	MAPF Macro
	MAPEND Macro

	Advanced Facilities
	Structured Fields
	Periodic Redisplay
	Time-out

	LU6.2 Transaction Programs
	Restrictions

	Syntax
	Device-Independent Input: READ
	Device-Dependent Input: READS
	Parameters:
	Return Codes
	Abends

	Input Using Map: READM
	Parameters:
	Return Codes
	Abends

	Device-Independent Output: WRT
	Device-Dependent Output: WRTS
	Special Output
	WRTSF - Write Structured Fields
	READB - Write "Read Buffer"
	Parameters:
	Return Codes
	Abends

	Output Using Map: WRTM
	Parameters
	Return Codes
	Abends

	Extended Graphics Support
	Symbol Sets
	Loading Symbol Sets
	Format

	Examples
	Example 1 - Terminal-Independent I/O
	Example 2 - Terminal-Independent I/O using delimiter list
	Example 3 - Terminal-Dependent Output
	Example 4 - Terminal I/O using Map
	Screen Layout
	Map definition
	Sample Program

	Example 5 - LU6.2 TP

